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ABSTRACT

The method of allowing fluctustions in the mechanical solution of hydro-
dynamic problems to teke the place of the entropy inorease in the shock, is analysed
statistically. The model corresponds to the thermal behavior of a substence of
anomaiously low specific heat, and the effect of the pseudo thermal motion is greater
than for any real substance, Therefore the model is a good approximation only when
the contribution of the thermal pressure is negligible; Curves are given from which
this contribution can be estimated, Other complicated features arise when the mass
intervals are not'equal and in the case of radial motion, A typioal ocuse, taken from

I.B.M, oaloulations, is discussed by way of illustration,

=8 ” UNCLASSIFIEL

=L o ese s eme see se
L i0E Q\\Q "
APPROVED' FOR PUBLI C*RETEASE ¥




APPROVED FOR PUBLI C RELEASE

ses 900 e2e ooo se,

THEORY OF wvon NEUMAN!‘S.‘ .mﬁfﬁon. #” @QTING SHOCKS

[ ] 00. . ... ce® ¢6o

L] [
o [
LY :"O b ) 0"' :

I, INTRODUCTION

i1t is well known that in hydrodynamic problems involving compressible media
there mey exist shock waves, i.8., places at which the velocity, pressure and demsity
are practically discontinuous, and at which the equations of Euler do not hold. The
reason for this is that the Euler equations assume the changes in the material to be
reversible, whereas #at a shock wave the gradients become 80 large that the dissipative
effeots (viscosity, heat conduotion) become important. Indeed, in the limit usually
considered, in which the dissipative terms are small in the units appropriate to the
problem, the shock is a sharp discontinuity and the gradients are infinite.

Therefore it would in zeneral not make semse to assume Euler's equations to
hold even across the shock, Von Neumann has pointed out, however, that the situation
is diflferent if one uses, instead of the differential equations, the approximate
difference equations which are the basis of one mechanical mothod of treating the
equations, In conditions where a shock would form, we know there exists no solution
of the differential eguations. Any solutlon of the difference equations will approxi-
mate to o solution of the differential equations only if the chenges of all functious
over one interval are small, hence the difference equations cannot he expsoted to heve
any solution of this kind at a shook. There are, hqwever, solutions of oscillatory
behavior containing fluebiations with periods of the order of the interval sizs, Thess,
according to von Neumann, can be regarded as a model of the increase of enmtropy in |
the shock, and indeed the fluctuations thus obtained represent the heat motion of the
shocked material,

It is evident that this model of the heat motion is very crude, and that it
does not represent correctly the thermal bshavior of any reasonable substance. Howsver,
there are many cases of interest in which the influence of temperature on the equation

of state is negligible, and in th?}ségbegses%'ni' xivoexpect that the error introduced by
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the model may not be sericus.

The purpose of the present report is to study the difference between the
model and an actual substence in more quantitative detail and to derive oriteria that

mAay serve to estimate the error in individual oases.

I3, BASIC EQUATIONS '

In one oase of a one-dimensional problem the differential equations are

&':_LP_E’E,::I,(V)",:E}_’ (2.1)
Po ?x ox

where y(t) is the position at time t, of the point which would be at x if the material

had normal density, p is the pressure, which is assumed to be a unique funotion of
the specific volume v(reversibility). MHore precisely, v stands for the ratic of the

volume to the normal volums . The normal density is Po o

The difference equation is obtained from this by choosing time intervals ©

and space intervals A, so that after neglecting higher than second powers of the

interval sizes, (2.1) becomes:

yn+l’m .4‘ yn”l’m - zyn,m= c""‘"‘L-"

1 . 1
62 pot (Pnmty - Pamez)
(2.2)
2
Vam (yn,m+_ = Yn,m. 5 )
where n, m label the time and spaoce intervuals:
tp = nd + const (2.3)

xn = me + oconst. UNGLASSIFIED

We apply these equations to the stafo. ofeualfadgss (00 ?A;pect behind a shock, where there
s -0 ® e o s '

¢ [ ] (1] . °
will be irregular fluctuations supefimgv!se?nar.:a0"maztﬁosoopio" or mean motion. If our
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interval sizes are chosen correctly, the mean quantities vary little over one intervel
and over a fow intervals we may regard all macroscopic quantities as uniform,
As to the "atomic" motion, or fluctuations, we shall assume that the ampli-

tude is small, The limitations introduced by this assumption will be discussed later,

We can then write
Yn,m = Yo,m V' Ta,m . (2.4)
where the bar denotes the "mean" position and Ma,m 18 small. Then
- 1
Pa,m = P(v) + (dp/dv) 3 (7n,m‘*‘§l - a,m- %\' ‘ (2.8)

Then (2.2) becomes:

+ 9 -27 , 1 d
Jo+l,m 5; lm “/mm — (.a% );(7n,m+1 + V)n’m_'l "27:1,111) (2.6)

Solutions of this equation ocan be written in the form

= A oi{fn *VYn) .
‘]n’m A ot{fn *Ya (2.7)
where, A, ﬁ, % are constants. Inserting this in {2.8), we have

=_ #82 4p -
(1-cos ) .‘;)KZ___ <dv : (1 - cos }I/) (2.8)

It i8 well known that the faotor

82 d
2. 2 (. 8\

must be less than unity in order that the step-by-step solution of (2.2) be possible.
Indeed, it is evident from (2.8) that if £2 > 1, & is imaginary near ;1/= n , and

hence there are disturbances which @ l13%dow Wrsheglially with time, making the
. ° Se e ee e o
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Otherwise there willeBe :N$ frguugppid, where N is the number of space
intervals in the rezlon under consideration, The values of y'belonging to these will
be spread uniformly over the interval - m to n,

If the lineer equations {2.6) were rigorous, all these oscillations would be
independent, Since, howevar, the correct equation (2.2, does contain terms of higher
degree, there will be a ceortain amount of coupling between different oscillations
which, given enough time, must produce some kind of statistical equilibrium,

For strong smplitudes the oscillation, where the terms of different degreos
in the amplitude are comparable, it is clear from dimensional arguments that the
“mean free path" of the oscillations, i.e., the distance a wave travels before equilie-
brium has essentially been established, is of the order of the interval size, with a
pumerical factor which, by analogy with the problem of waves in crystal lattices, one
would expect to be larger than unity, As the mean emplitude is reduced, and the
coupling is weaker, the mean free pafh increases further, and one would thus expect
that for some appreciable distance behind the shock the oscillatinon oaused by the shéck

may not be in equilibrium, This effect extends over a greater distance for weaker

shocks.

I1I., THERMODYNAHMIC RELATIONS FOR SHALL Z

We have seen above that we may expect statistical equilibrium to be
established except very closely behind the shock. To this eguilibrium ordinary thermo-
dynamics is not immediately applicable, since equation (2.6) is & difference equation
in time as well as in space, and hence energy conservation does not hold in the usual
form.

If, however, £<< 1, the time interval is negligible in comparison with

the spaoce interval, and the oquationé are then essentially differential equations in

time, They are closely analogous to those for a cne-dimensional Bory-yop Karmapn

P s —
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lattice, Since the equations are linear, and there is a restoring force for each
degree of freedom, it is olear that, in equilibrium the thermal energy will be kT
per degree of freedom, or

B, = L kT (3.1)

th pol

per unit mmss, where 1// is the number of dggrees of freedome per unit length, k
Boltemann's constant, end T the temperature.

The unit of temperature is here nrbitfary, since we cannot measure the
temperature of this fictitious system by bringing it into thermal contact with any
other physical system, hence only the product kT has & definite meaning, For con-
venience we choose our units of temperature in such a way that

k = pgt (3.2)
equal to the mass per interval, hence

E¢ph =T | (3.3)

As in any other oscillating system, this energy is on the average half

kinetic and half potentiaml, Hence for the kinetic energy per unit nass

or

uwé =7 (3.4)
where

u =% /ot 4 (3.8)

is the velocity associated with the fluctuations, and the bar denctes the statistioal
average.
(3.4) may be regerdod as & definitign of ol and allows one to estimate T

in any individual case. The potenta‘.:a:l.éyézigy.é:.eé:méli mass is UNCI_ASSW'EB

13()'-1 ¢
v ) =
oo § pdv
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Por small deviations, to second order inclusive,

B(v) = B() * - p(¥) Fv)- 3 ——( ) & -v)? (3.7)

On the stetistical average, the first term gives the potential energy of the mean

density without temperature, the second term vanishes, and the last reprssents the

potential part of the thermal energy, hence:

gp ( )“" (v-v) 3% T (3.8)
or
=75 _ dp -1
(v¥)8 = = (3.9)

Since dp/dv is known, and T can be found from (3.4) this relation can be treated.

However, the equality of kinetio and potential snergy, in tho time average, holds

for any harmonic motion whather in equilibrium or not, Hence this test merely verl-

fies that the amplitudes of osocillation are weak enough to mske the motion essentially

harmonic,

#te can now find the pressure caused by the heat motion, By expansion to

second order
=p(@) + L (vT) + 2 “P (v-7)?
dv
On the average, the first term is the pressure dus to the mesn density without tempers-

ture, the second term vanishes the last is the thermal pressure,

=149 2= L= 2 d
Ptk =3 (E%>?G ~v)" = -5 vem)t —

dv

Henoe

dp
dv

(3.11)
(The negative sign comes from the fact that dpjﬁv is necessarily negative.) Using (3.9)

> = INCLASSIFE)

d

— 1
Pth = - i Pol. o (log
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In general,

' = _ OF = OF
P~~~ T = P o 3,15
oV dV ( )

where F 1is the free energy per unit mass, and V the volume per unit mass, F isa
sum over the different degrees of freedom, and for each degree of i‘reedom,

F3 = -kT logwj + const (3.14)
where 0)3 is its freguency (in radisns per sec) and the constant may depend on the

temperature but not on v. Hence, using (3.2),

s (3.0 15)

2
M v

the sum to extend over all degreaes of freedom belonging to the region considered,
which has a total mass M, The frequencies are to be found from (2.8) with

w =bi 4 ' (3.18)

ir A4 is small the right-hand side of (2.8) is always small, hence # is &
small angle and the left-hand side osn be replaced by_;: ﬁfz.o Hence each of the

frequencies is proportional to ‘dp/dv‘ , and

“dp/dv' (3.17)

where f{; depends on the wave number ){/ s but not on v. Hence all terms of the sum in
(3.15) are equal, and the number of terms is equal to the number of intervals in a
mass M, i.e. to

N

Pod

(3.18)

Inserting this in (3,15) we obtain again (3.12)

This derivation is of interest since it shows the deﬂﬁﬁrﬁsmﬂtﬁa result

on the relation (3,17 which is norpdcre&, rS%’s g is small,

S e
3 :--::_—-:ﬁ
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'Wo may reasonably surmise thut, for our present purpose, £ can be regarded
as small as long as (3.17) is substantially correct. To test this, the solutions of
(2.8) have been plotted in Fig, 1 against¢£ for different angles ﬂﬁ It is seen that
all lines are straight in good approzimation up to £= 1/2 and in view of (2.9) this
means that in this range all freguencies are proportional to JT?E;ZE;]. vor £= 1/2
o1ly the uppermost curves begin to bend, and without further investigation it is not

possible to estimnte to what extent this would affect our conclusions,

IV, HUGONIOT RELATIONS

Consider now a shock, running into material at rest, {(This causes no
essential loss of generality). Let vy be the specific volume, p] the pressure ahead

of the shock, and assume there is no thermel motion shead of ths shock, Then the

first Hugonlot relation is

= UW(1- V) (4.1)
whore u is the mean velocity and v the mean specific volume behind the shock, U the
shock velocity. This relation only expresses conservation of material and must be
satisfied automatically in our model,

The other two relations:

p - pp = pol% YL (4.2)
Vlz
and
1 -
Po(B-E1) =% (v3-¥) (p*p7) 4.3)

wil)l now also contain the thermal pressure and energy:

p(¥) - Py * Pen =."2§. (vg - V) (44““0[!88\%9

vl [ ] oce © 200 €00 00O
Po [EG.'-} -El + Eth] - .[P:(Vioa 'f;{'\f. .)- 1:0;;1-,})] (w
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It is convenient to write g for the ratio
& = poEtn/Pth (4,6)

Then, by (3.3) and (3,12):

- 2
y 4 105/ 8P (4.7)
dv dv
and with this abbreviastion, we can solve (4.5) for pyy :
1 . -
Pth :‘Z(P+P1)(vl‘v) *po(EG) DEI) (4 8)
g ="21; (Vl-—vn)
and
poUR(v1¥) _ & [p(??)-pll + p1(v1¥) -p, [E(?) —E]_]
1 & - f (vl - ‘v}

The thermodynamic properties'of the model are unimportant as long as (4.8) is small
compared to the pressure p(v)., At the same time (4.8) allows one to estimate the
amplitude of fluctuations to be expected behind a shock of given strength,

For this purpose one may either compare the average pressure with the
prossure belonging to the average volume ¥ or use the mean square velocity fluctuation,

which, using (4.6) and (3.3), (3.4) is

-5 _ '
Uth ~ & Pth (4.10)
For strang shooks it is evident from (4.8) that there is a limiting compression ratio,

which cannot be excseded even for an infinite pressure and this is givem by the con-

dition

£ =2 () (211

APPROVED® F&1! PUELI C*RELEASE
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As g depends on the volume in the final state, it is most convenient to express
this limiting compression by giving the highest volume vy for which a given v oan
be reached in a single shock:

vy =7+ 2¢(¥) (4,12)

Fig. 2 shows g as a function of tho density for tuballoy using the
equation of state of Metropolis (La-208),

Fig. 3 shows the limiting compressiom ratio for the same data, from Bq.(4.12),

Fig. 4 shows the ﬁharmal pressure in the seme case, starting from normal
density and from material at twice normal density. For comparisonm, the "cold" pressure
p(v) is also shovwn, as weoll as the correct thermal pressure behind & shock with normal
material, as caloculated by Keller,

It is evident from this figure that, whenever the thermal pressure amounts
to an appreciable contribution to the cold pressure, it is considerably in excess of
the trus value,

Table I lists the thermal pressures for tuballoy for various values of
v and ¥,

From these values, the mean amplitude of the fluctuations was obtained by

the formula

-1
w2 = Pth &

. .
E?? (4.13)

which follows immediately from (3.9), (3.3) and (4.6). Since, for a harmonioc
osoillation, the root mean squere amplitude is L/ {E—times the maximum smplitude,

we oan define a mipimum volume that would be reached for harmonic oscillation of the

same pya o This is .‘: °s* E -3 E" E°:
in * v - 4": avé o0 0% 000 000 s0e 2o (4.14)
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This quantity, which is convenient for practical rurposes, is shown in Fig. 9.

V. OTHER EFFECTS

The analysis given in the previous sections in some ways is still very
idealiged, and we want to discuss a few effsects that have been neglectzd,

{(a). The fact has already been referred to that the discussion applies
only to smsll /5, and probably in practice is JZél/éa This probably covers all
epplications of practical interest.

(b), Moreover, we have assumed that the oscillations are always in
statistical equilibrium., In fact, all oscillations arise at the shock front, and it
will teke them a finite time to get into equilibrium, This means that there will be
a region behind the shook front in which there is no equilibrium. The extent of this
region is inversely proportional to the temperatures since the establishment of
equilibrium depends on the coupling between different degrees of freedom by the terms
of higher order in the amplitude of the oscillations., This effect may cause errors
if the extent of the non-equilibrium region is comparable to the distance over which
the dynuamical variables change appreciably,

{(¢). In the discussion given above, we have assumed harmonic oscillations,
which is correct only for small amplitudes., When the "thermal" pressure excseds the
"eold" pressure this is no longer justified. As a result the thermodynamic properties
of the system may differ from our desoription at high temperaturss end in particular
the limiting compression may be apprsolably affeoted, On the other hand the limit of
applicability of the method will remain unchanged since this refers to the condition
that the thermal pressure is negliglible which means small amplitude,

(d). Conduction of Enervy,. in the.1hya;cal applications of most interest,

heat conduction is usually negli@ib%ﬂ.ﬂbﬂ.a%.ﬂhnvt#%e model therefore ocught to give

adinbatio changes in the state o* mauter ofarwuﬁer& except at the shock front. 1In our

APPROVED FOR PUBLI C RE—
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model, there exists a finite heat conductivity carried by the sound waves and limited
mainly by the second-order terms which limit the free run of such waves. The ™mean
free path” of the waves is dimensionally of the order of the interval size, multiplied
by a function of temperature which is large for low temperatures. Hence, one may
expect some error due to this sffect for weak shocks, However, as the heat content
is then small, this will not lead to appreciable errors. In any case, for any shook
strength this effect can by made negligible by a generous choice of the number of
intervals used,

(e). Changing interval size, It is often convaﬁient in calculations not
to make all intervals equal but to use groups of smaller intervals in regions where
more structure is required. Consider the boundary between two such groups. Physiecally,
the two parts of the material ought to be in equilibrium for equal temperature, i.e.,
for equal energy per unit mass, This does not, however, in the model correépond to
equality of temperatures as defined by (3.3) sincs the latter is measured on a con-
ventional scale, In tho model, the two groups of points are in egquilibrium if the
energy per degree of freedom is the same, which umeans different energies per unit mass.
What we have done corresponds, in effect, to using different values of Avogadio's
number in different parts of the material,

Suppose, for example, that a shock is moving through a range where the
interval size is 4, and that a short distance behind the shock it is reduced to 4/2.
Then, as soon as the disturbances have had time to travel back to the region with the
smaller intervals, an squilibrium will be approached in whioch the energy per interval

is the same, so that the temperatuie at the small intervals will be twice as high as

in the larger omnes,




APPROVED FOR PUBLI C RELEASE

Tise T8 v Te
- -S4 B
o0 .:. :.. .:. :.. :..
e o T 8 o
=15 <

VI, APPLICATION TO SPHERICAL PROBLEMS

An important class of problems concerns motion with spherical symmetry. Then

we have, in place of (2.1)

0o 1 d 2R3
R = 3R% -«—Bﬁ sV (6,1)
o

where R 1is the actual distance from the center, and the independent variable H is
the mass contained between the point under consideration and the center. If we not
obtaein the linear equations for small disturbances, we have to bsar in mind that the
mass contribution to the free energy comes from oscillations with wave lengths of the
order of. the interval size, and that, for any recasonable ohoice of interval, this is
small compared to the distance from the center., Hence if we write again

R=R+Y (6.2)
where R represents the undisturbed motion, the variation of 7 is wuch more rapid

than that of R, Uence we find:

' 2
?0:‘:-.!: 222.03sz 8.3
9 5 or? 2 gﬁg (6,3)

Bere R® should be rogarded as looally coustant. If the calculation is oarried out with
constant intervals in mass, this leads to an equation of the type of (2.6)., It is
8till true that upon & change in volume eaoh freguency is proportional to ‘dp/'dvll/2
and hence the formulse of Section ILI still apply,

However, in addition the frequenoies vary with R, the position of the mass

elemont, and hence we find a dependence of f{roe onergy on position. This means a

radlal force G psr unit mass

G = - oxpR oAb LR (8.4)

APPROVED FOR PUBLI'C RELEASE
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Using (3.,14)

M 1w
and, in view of (6.3) .
d logl 4
3R TR
so that
= . 4T/R (6.5)

Using (4 6) and (3.3):

G = - _%._5.. pth (606)

In the numerical example illustrated in Tig, 2, g is of the order of 1/4
over a considerable region, hence

Po G~ = py/R (6.7)
I1f the trus pressure varies, for example, as the invorse radius, the true pressure
gradient is

- p/R
and hence the relative error in the acceleration is of the order of pth/b, i.e., the

same as the relative error in the pressure itself,

VII. COMPARISON WITE I.85.M, CALCULATIONS

As an illustration of the above relations, typical date were taken from
I.3.M. Problem 10, in which a collepsing shell hits a presssembled sphere, the shook
returning into the shell being treated by the von Neumann method. One would expsct
this case to give fairly olean-cut results, since the region considered uses a con-
stant interval size so that no complications arise from changes in the interval, and

also since, over the shell, the ridﬂhs:varzeg.byae.small factor so that the redial

effects desoribed above ars not likely o be serious,
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APPROVED FOR PUBLI C RELEASE

[ S ] [ [ (1% [

[ » ¢ ¢ o e o
9 eed? o o3& 9 & &
27 €62 909 a0e 0060 oo

2 [ 6o o LN ]

s 6 As e es o o

a 6 o e o o

e e o o ® o o o
e e¢eo o c0d 000 coO

- 17 =

It was found £hat no clear picture of the fluctuations is obtained by
plotting the dynamic guantities against mass at constent time, but that very regular
curves result for the volume at & given muss point as a function of time. This is
not surprising sinoe the condition £ £ 1 means that, for an oscillation with a wave
length comparable to the space interval the preled must necessarily be rather larger
than one time interval,

Fig. 6 shows the specific volume for a number of mass points as a function
of time, A{ time zero the impact between the moving and the stationmary shell had
already teken plece and the shoock had bsen carried by analytical calculation to about
mass point No, 30, The interface was at point 25, Hence the ocurves for mass points
23, 24, 26, which are shown in the figure, show initially no fluctuations, but they
later acquire some thermal motion from their neighbors. Mass point 30 is just about
being shooked when the I.B.N. calculation starts. All following points pass the
shock in conditions to whioch our theory is applicable, One can see that the osoil-
lations of volume are fairly harmonic, and that, in particular, the first minimum
ought to represent the mean volume after the shook minus the maximum amplitude, and
the curves of Fig. 5 should therefore be mpplicable,

By reading the volumes ahead of the shook and the first minimum we oan then

obtain the average volume behind the shock:s

Mass Point No, 32 35 40 45
v, »70 -69 .69 o71
Voin .44 .42 .42 .43
v .02 -850 1) 051

The last line is taken from Fivo 5 by interpolation° The mean volumes

behind the shock obtained in this® wai az :.:1 r’éas:)r:able agreement with averages obtained

from Fig. 6 by inspection, with tha'éxqﬁbtzvh'o: yhﬁs point 32 for which it appears
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that the average by inspection is somewhat lower ; this may be due to the fact

that this mass point, being too near to the "cold" compressed region, is losing
amplitude by contact with its neighbors, so that our theory overestimates its fluotu-
ations. For the rest, the prediotions are well borne out,

A similar test was applied to I.B.M. run A, dealing with the shook
returned from the center of a solid implosion., Here the smplitudes of different
mass points differ rather widely, no doubt due to the faot that "heat conduction"
between different rate groups tends to establish a constant energy per interval.
Since over the period of & fluctuation the density changes by an appreciable amount
it is not easyt obtain averages "by inspection" but the averazes derived in the
above manner from the first minimum are comparable with the averages by inspection to

the extent to which the latter can be defined,
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TABLE 1
Py 1n megabars,

Theoretical Pressures in Model as a
Function of the Final Volume v and the Initial Volume v e

-v"' -
vy \ 9091 8333 7692 07142 .6667 +6250 .5566 0B 0l 03333 | .2857| .26 [.2
1.0 -0063 -0331 .168 .541 1.47 3,73 26,85
i 9 15,27
5 ° °
8 3,72 | 88,5 ol oo 3°
[Fleecedle Y o 0 ° . oo | o °
Ceved 2 %00t ' Seedh? 1
W :20: 195 reedy
Uooos]  segese 2960 | 11,7 553 .o
'U. [ 1 [ ] . :....: :.
GO...L ° o e o
o E {17 23691 6,68 | 66,7 Y TR
(.)oozolb :oé : ,163 2,81 21.5 .443 secche o
. .h :...o: ooele [ ]
E" °53 1.05 | 9.33 | 60,8
» b 0339 4,05 22,1] 139
.45 .118 1,69 9,04| 39.3
o4 0344 | 2,900 13.5 | 233
038 137 o711} 4,17 | 61,2
3 12,1
925 1079
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